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Abstract

We consider a semilinear system of the form ∂ui(t, x)/∂t = k(t)Aui(t, x) + uβi

i′ (t, x), with

Dirichlet boundary conditions on a bounded open set D ⊂ Rd, where k : [0,∞) → [0,∞) is

continuous, A is the infinitesimal generator of a symmetric Lévy process Z ≡ {Z(t)}t≥0, βi > 1,

i ∈ {1, 2} and i′ = 3− i. We give conditions on D and on the Lévy measure of Z under which

our system possesses global positive solutions, or exhibits blow up in finite time. Our approach

is based on the intrinsic ultracontractivity property of the semigroup generated by the process

Z killed on leaving D.
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Keywords and phrases: Semilinear nonautonomous equations, Dirichlet problem, ultracontrac-

tive semigroup, Markov evolution systems, finite-time blow up.

1 Introduction and background

Consider a semilinear problem of the form

∂u(t, x)

∂t
= k(t)∆αu(t, x) + uβ(t, x), (1)

u(0, x) = f(x), x ∈ D,

where k : [0,∞) → [0,∞) is continuous and not identically zero, ∆α is the fractional power

−(−∆)α/2 of the Laplacian, 0 < α ≤ 2, D ⊂ Rd is an open set, β > 1 is a constant and f ≥ 0 is a

bounded measurable function. It is known that the factor k(t) has a strong effect on the asymptotic

behavior of positive solutions of (1): when D = Rd we proved in [14] that integrability of k already

excludes existence of global solutions, and if
∫ t
0 k(s) ds ∼ tρ as t → ∞ for some ρ ≥ 1, then the

blow up behavior of (1) (i.e. finite-time blow up vs. existence of global solutions) parallels that of

the equation ∂u(t)/∂t = ∆α/ρu + uβ. If D is a bounded smooth domain, H. Fujita [7] proved, in

the case of k ≡ 1 and α = 2, that for any nontrivial, nonnegative initial value f ∈ L2(D) such that∫
D
f(x)ϕ0(x) dx > λ

1/(β−1)
0 , (2)
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the solution of equation (1) with Dirichlet boundary condition blows up in finite time. Here λ0 > 0

is the first eigenvalue of the Laplacian on D, and ϕ0 the corresponding eigenfunction normalized

so that ‖ϕ0‖L1 = 1.

In this paper we investigate the dichotomy: finite-time blow up versus existence, globally in

time, of positive solutions of the nonautonomous semilinear system

∂u1 (t, x)

∂t
= k (t)Au1 (t, x) + uβ12 (t, x) , t > 0, x ∈ D,

∂u2 (t, x)

∂t
= k (t)Au2 (t, x) + uβ21 (t, x) , t > 0, x ∈ D, (3)

ui (0, x) = fi (x) , x ∈ D, ui|Dc ≡ 0, i = 1, 2,

where A is the infinitesimal generator of a symmetric Lévy process {Z(t)}t≥0, βi > 1 are constants,

D ⊂ Rd is a bounded open set with d ≥ 1, and the initial values fi, i = 1, 2, are nonnegative

functions in the space C0 (D) of continuous functions on D vanishing on Dc. As before, the

function k : [0,∞)→ [0,∞) is assumed to be continuous and not identically zero.

System (3) provides a simplified model of the process of diffusion of heat and burning in a two-

component continuous media with temporary-inhomogeneous thermal conductivity. In this model

u1 and u2 represent the temperatures of the two reactant components, the thermal conductivity is

supposed equal for both substances but it might be discontinuous, and even evolve solely by jumps.

See [8], [9] and [5] for similar models with nonlinear conductivity; see [13] and [6] for other related

results.
Recall [16] that the Lévy process Z ≡ {Z(t)}t≥0 is called symmetric when Z(t) and −Z(t)

have the same distribution for all t ≥ 0. The probability law of Z is uniquely determined by

the probability measure µ(B) := Pr{Z(1) ∈ B}, B ∈ B(Rd) (here B(Rd) denotes the system of

Borel sets in Rd), which is infinitely divisible and therefore, by the Lévy-Khintchine formula, its

normalized Fourier transform µ̂ admits the representation

µ̂(z) = exp

−1

2
〈z,Az〉+ i〈γ, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉1{x: |x|≤1}(x)

)
ν(dx)

 , z ∈ Rd, i =
√
−1,

where A = (ajk) is a symmetric nonnegative-definite matrix, γ = (γ1, . . . , γd) ∈ Rd and ν is a mea-

sure on Rd such that ν({0}) = 0 and
∫
Rd(|x|

2 ∧ 1) ν(dx) <∞, which is termed Lévy measure. The

operator A arises as the generator of the strongly continuous semigroup of contractions {S(t)}t≥0
defined by S(t)f(x) = E [f(x+ Z(t))], f ∈ C0(Rd), and is given by

Af(x) =
1

2

d∑
j,k=1

ajk∂
2f

∂xj∂xk
(x)+

d∑
j=1

γj∂f

∂xj
(x)+

∫
Rd

f(x+ y)− f(x)−
d∑
j=1

yj∂f

∂xj
(x)1{x: |x|≤1}(y)

 ν(dy)

for any twice continuously differentiable f ∈ C0(Rd). Special instances of A include the Laplacian

∆ and its fractional powers ∆α with 0 < α ≤ 2.

Dirichlet boundary value problems of the above type in the Gaussian case ν ≡ 0 have been

studied by many authors. In the present paper we focus on the purely non-Gaussian symmetric
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case in which A = 0 and ν is a nontrivial Lévy measure, hence Z is a pure-jump process which

leaves D only when it hits Dc. This gives rise to the condition ui|Dc = 0 in (3), which is the form

that the Dirichlet boundary condition takes in our setting; see [1] and [2].

We are going to assume that D is an open bounded set, and that the semigroup {SD(t)}t≥0
of the process Z killed on exiting D is intrinsically ultracontractive. Our main result, Theorem 6,

gives a criterion in terms of the system parameters which is useful to determine for which initial

values our semilinear system explodes in finite time. In particular, System (3) exhibits finite-time

blow up provided that

min
i∈{1,2}

∫
D
fi(x)ϕ0(x) dx > Const. max

i∈{1,2}

[∫ ∞
0

min
i∈{1,2}

(
e−λ0K(r,0)

)βi−1
dr

](βi+1)/(1−β1β2)
;

here

K (t, s) =

∫ t

s
k (r) dr, 0 ≤ s ≤ t, (4)

and λ0 > 0 and ϕ0 are, respectively, the first eigenvalue and corresponding eigenfunction of the

infinitesimal generator of the semigroup {SD(t)}t≥0 (see Section 2 below). Hence, when k is a

continuous integrable function, positive solutions corresponding to initial values satisfying the above

inequality cannot be global.

The approach we use to prove Theorem 6 uses in an essential way that the semigroup {SD(t)}t≥0
is intrinsically ultracontractive. The notion of intrinsic ultracontractivity was introduced by Davies

and Simon in [4], and has been investigated by many authors since then, specially for diffusions

(both symmetric and nonsymmetric). The cases in which A = − (−∆)α/2, 0 < α ≤ 2, were explored

in [3], [4] and [11]. For symmetric Lévy processes, this notion was studied by T. Grzywny [10].

Several of the results and hypothesis from [10] are going to be used in our arguments, specially in

Section 2 where we introduce the additive process generated by the family of generators {k (t)A}t≥0,
and the corresponding killed process. In Section 3 we prove existence of local solutions of (3) using

the classical fixed-point argument, adapted to our needs. Conditions ensuring existence of a global

positive solution of (3) are given in Section 4. Theorem 6 is proved in Section 5.

2 Killed additive process

Let Z ≡ {Z(t)}t≥0 be a symmetric Lévy process in Rd with generator A, and whose Lévy measure

ν is not identically zero. We assume that Z posessess a family of transition densities p (t, x, y) ≡
p (t, x− y) which are continuous for every t > 0, and that for any δ > 0 there exists a constant

c = c(δ) such that p (t, x) ≤ c for t > 0 and |x| ≥ δ. In [12] (Lemma 2.5) and [1] (Lemma 1.1),

sufficient conditions are given for continuity on Rd\{0} and boundedness for every t > 0 of the

transition densities of isotropic unimodal pure-jump Lévy processes.

Notice that {ν (t, ·) := K (t, 0) ν (·)}t≥0 is a family of Lévy measures satisfying

ν (0, ·) = 0,

ν (s,B) ≤ ν (t, B) for every B ∈ B(Rd) whenever 0 ≤ s ≤ t,

ν (s,B) → ν (t, B) for every B ∈ B(Rd) as s→ t.
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Hence (see [16], Chapter 2.9) there exists an additive process in law {W (t)}t≥0, uniquely determined

up to identity in law, such that the infinitely divisible probability measure Pr [W (t) ∈ · ] has Lévy

measure ν (t, ·), t ≥ 0. Moreover, {W (t)}t≥0 is a Markov process with transition probability

function P (s, x, t, B) := Pr [W (t)−W (s) ∈ B − x], 0 ≤ s ≤ t, x ∈ Rd, B ∈ B(Rd). Since

µ(·) = Pr [Z(1) ∈ · ] has Lévy measure ν (·), the probability µK(t,0)(·) has the Lévy measure ν (t, ·)
defined above. Therefore

Pr [W (t) ∈ · ] = µK(t,0)(·) = Pr [Z (K(t, 0)) ∈ · ] (5)

an thus

P (s, x, t, B) = Pr [Z (K(t, 0))− Z (K(s, 0)) ∈ B − x]

= Pr [Z (K(t, 0)−K(s, 0)) ∈ B − x]

= Pr [Z (K(t, s)) ∈ B − x]

= (S (K(t, s)) 1B) (x),

where {S(t)}t≥0 denotes the semigroup with generator A and 1B is the indicator function of B.

Since the function (t, x) 7→ S (K(t, s)) f(x), (t, x) ∈ [s,∞)× Rd, is the unique solution of

∂w(t, x)

∂t
= k(t)Aw(t, x), t > s, x ∈ Rd,

w(s, x) = f(x), f ∈ C0(Rd),

we call {W (t)}t≥0 the time-inhomogeneous Markov process corresponding to the family of gener-

ators {k (t)A}t≥0. Letting

p (s, x, t, y) ≡ p (K (t, s) , x, y) , 0 ≤ s ≤ t, x, y ∈ Rd,

we see that p (s, x, t, y) is a continuous transition density function for the process {W (t)}t≥0 . We

define
τD = inf {t > 0 : W (t) /∈ D} and τ̂D = inf {t > 0 : Z (t) /∈ D} .

Using (5) we obtain that

τ̂D = K (τD, 0) . (6)

Let {SD (t)}t≥0 be the semigroup associated to the process {Z (t)}t≥0 killed on exiting D, and let

pD (t, x, y) be the transition density function of {SD (t)}t≥0 , i.e.

SD (t) f (x) := Ex [f (Z (t)) ; t < τ̂D] =

∫
D
f (y) pD (t, x, y) dy, x ∈ D, t > 0, f ∈ B+(Rd),

where B+
(
Rd
)

is the space of nonnegative bounded measurable functions on Rd. Here and in

the sequel P x and Ex denote, respectively, the distribution and expectation with respect to the

process {x+ Z (t)}t≥0 starting in x ∈ Rd, but we use the same symbol {Z (t)}t≥0 for the resulting

process. It is known [10] that pD (t, x, y) = pD (t, y, x) and pD (t, x, y) ≤ p (t, x, y) for all t > 0
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and x, y ∈ D, and that {SD (t)}t≥0 is a strongly continuous semigroup of contractions on the

space L2 (D). Moreover, the linear operators SD (t), t ≥ 0, are compact, and there exists an

orthonormal basis of eigenfunctions {ϕn}∞n=0 with corresponding eigenvalues
{
e−λnt

}∞
n=0

satisfying

0 < λ0 < λ1 ≤ λ2 . . . , and lim
n→∞

λn =∞. All eigenfunctions ϕn are continuous and real-valued (see

[10]). Let Br (x) =
{
y ∈ Rd : |y − x| < 1

}
be the open ball of radius r > 0 centered at x ∈ Rd. If,

in addition to the above assumptions

(H1) D is a connected open bounded set or,

(H2) D is a bounded open set and for every x ∈ Rd and r > 0, ν (Br (x)) > 0,

then the transition density pD (t, ·, ·), t > 0 is strictly positive on D × D and the eigenfunction

ϕ0(x) > 0 for every x ∈ D (see [10], Proposition 2.2).

Let {WD (t)}t≥0 be the additive process {W (t)}t≥0 killed on exiting D, namely

WD (t) =

{
W (t) on {t < τD} ,
∂ on {t ≥ τD} ,

where ∂ is a cemetery point. The state space of {WD(t)}t≥0 is the set D∂ = D ∪ {∂}, and from (6)

it follows that its transition function is given by

PD (s, x, t,Γ) = P x [Z (K (t, s)) ∈ Γ;K (t, s) < τ̂D] , 0 ≤ s < t, x ∈ D, Γ ∈ B (D) ,

where B (D) denotes the Borel σ-field on D. Hence the transition density function of {WD(t)}t≥0
is given by pD (s, x, t, y) = pD (K (t, s) , x, y) and thus, for every f ∈ L2 (D),

UD (t, s) f (x) ≡
∫
D
f (y) pD (s, x, t, y) dy = SD (K (t, s)) f (x) , 0 ≤ s < t, x ∈ D. (7)

Proposition 1 If (H1) or (H2) holds, then the function pD (s, x, t, y) is a density of PD (s, x, t,Γ) ,

which is strictly positive, symmetric and continuous on D ×D.

Proof. This follows easily from the fact that pD (t, x, y) is a density of PD (t, x,Γ), which is strictly

positive, symmetric and continuous on D ×D (see [10], Proposition 2.2).

Using (7) and the fact that {SD (t)}t≥0 is a strongly continuous semigroup of contractions on

L2 (D), we obtain that {UD (t, s)}t≥s≥0 is an evolution family of contractions on L2 (D). In [10]

(Theorem 3.1) it is proved that either condition (H2) or

(H3) D is an open bounded connected Lipschitz set, and for every x ∈ S, γ ∈ (0, π/2] and r > 0,

ν (Γγ (x) ∩Br (0)) > 0,

where S denotes the unit sphere in Rd and Γγ (x) = {y ∈ Rd : 〈x, y〉 > |y| cos γ}, imply that

{SD (t)}t≥0 is an intrinsically ultracontractive semigroup, i.e., for all t > 0 there exists a positive

constant c = c (t,D) such that, for all f ∈ L2(D),

|SD (t) f (x)| < cϕ0 (x) ‖f‖L2(D) , x ∈ D; (8)

see [4], Theorem 3.2.
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 3 Local existence of a mild solution

A solution of the integral system

ui (t, x) = UD (t, 0) fi (x) +

∫ t

0
UD (t, r)uβii′ (r, x) dr, t ≥ 0, x ∈ D, (9)

is called a mild solution of (3); here and in the sequel, i ∈ {1, 2} and i′ = 3− i.
We are going to assume that f1 and f2 are nonnegative functions in L∞(D), where L∞(D) is

the space of real-valued essentially bounded functions defined on D.

Our proof of the existence of local solutions is an adaptation, to our case, of the proof given in

[17]. For any constant τ > 0 let

Eτ ≡ {(u1, u2) : [0, τ ]→ L∞(D)× L∞(D), |||(u1, u2)||| <∞},

where
|||(u1, u2)||| ≡ sup

0≤t≤τ
{||u1(t, ·)||∞ + ||u2(t, ·)||∞}.

The couple (Eτ , ||| |||) is a Banach space and Pτ ≡ {(u1, u2) ∈ Eτ : u1 ≥ 0, u2 ≥ 0} and CR ≡
{(u1, u2) ∈ Eτ : |||(u1, u2)||| ≤ R}, R > 0, are closed subsets of Eτ .

Theorem 2 Let fi : D → [0,∞) be in L∞(D), i = 1, 2. There exists a constant τ = τ(f1, f2) > 0

such that the integral system (9) posesses a unique nonnegative local solution in L∞([0, τ ] ×D) ×
L∞([0, τ ]×D).

Proof. Define the operator Ψ on CR ∩ Pτ by

Ψ (u1, u2) (t, x) = (UD (t, 0) f1 (x) , UD (t, 0) f2 (x))

+

(∫ t

0
UD (t, r)uβ12 (r, x) dr,

∫ t

0
UD (t, r)uβ21 (r, x) dr

)
. (10)

We are going to show that Ψ is a contraction on CR ∩ Pτ for suitably chosen R > 0 and τ > 0. In

fact, if (u1, u2), (ũ1, ũ2) ∈ CR ∩ Pτ , then

|||Ψ(u1, u2)−Ψ(ũ1, ũ2)||| ≤ sup
0≤t≤τ

∫ t

0
‖uβ12 (r, ·)− ũβ12 (r, ·))‖∞dr+ sup

0≤t≤τ

∫ t

0
‖uβ21 (r, ·)− ũβ21 (r, ·))‖∞dr.

From the elementary inequality |ap− bp| ≤ p(a∨ b)p−1|a− b|, which holds for all a, b > 0 and p ≥ 1,

we get

|||Ψ(u1, u2)−Ψ(ũ1, ũ2)||| ≤ β1R
β1−1

∫ τ

0
‖u2(r, ·)− ũ2(r, ·)‖∞dr

+β2R
β2−1

∫ τ

0
‖u1(r, ·)− ũ1(r, ·)‖∞dr

≤ (β1R
β1−1 ∨ β2Rβ2−1)|||(u1, u2)− (ũ1, ũ2)|||τ. (11)
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Noticing that

|||Ψ(u1, u2)||| ≤ ||f1||∞ + ||f2||∞ + τ
(
Rβ1 +Rβ2

)
,

by taking R > 0 big enough and τ > 0 sufficiently small it follows from (11) that Ψ is a contraction

mapping on CR ∩ Pτ . Thus, the Banach fixed-point theorem implies that (9) posesses a unique

solution (u1, u2) such that ui ≥ 0, i = 1, 2.

4 Global existence of the mild solution

Here we suppose again that fi ∈ L∞(D). Our proof of the next theorem follows closely the proof

of Theorem 2.2 in [14].

Theorem 3 Let fi be nonnegative, and let g ≡ f1 ∨ f2. If

(βi − 1)

∫ ∞
0
‖UD(t, 0)g‖βi−1∞ dt < 1, i = 1, 2,

then the solution of the integral system (9) is global.

Proof. If g is identically zero, the nonnegative solution of (9) is clearly (u1, u2) ≡ (0, 0), which is

global. Now, if g is not identically zero, putting

Bi(t) =

[
1− (βi − 1)

∫ t

0
‖UD(r, 0)g‖βi−1∞ dr

]− 1
βi−1

we get Bi(0) = 1 and

d

dt
Bi(t) = − 1

βi − 1

[
1− (βi − 1)

∫ t

0
‖UD(r, 0)g‖βi−1∞ dr

]− 1
βi−1

−1
[−(βi − 1)‖UD(t, 0)g‖βi−1∞ ]

= ‖UD(t, 0)g‖βi−1∞ Bβi
i (t),

which gives

Bi(t) = 1 +

∫ t

0
‖UD(r, 0)g‖βi−1∞ Bβi

i (r)dr, i = 1, 2. (12)

Since the evolution system {UD(t, s)}t≥s≥0 is positivity-preserving (due to (7)), we can choose two

continuous functions vi : [0,∞)×D → [0,∞), i = 1, 2, such that vi(t, ·) ∈ Cb(D) for all t ≥ 0 and

0 ≤ vi(t, x) ≤ (B1(t) ∧B2(t))UD(t, 0)g(x), t ≥ 0, i = 1, 2.

Let us define

Fivi(t, x) := UD(t, 0)fi(x) +

∫ t

0
UD(t, r)vβii′ (r, x) dr.
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Because of g ≥ fi and Bi(r) ≥ B1(r) ∧B2(r), i = 1, 2,

Fivi(t, x) ≤ UD(t, 0)g(x) +

∫ t

0
Bβi
i (r)UD(t, r) (UD(r, 0)g(x))βi dr

≤ UD(t, 0)g(x) +

∫ t

0
Bβi
i (r)UD(t, r)UD(r, 0)g(x)‖UD(r, 0)g‖βi−1∞ dr

= UD(t, 0)g(x)

[
1 +

∫ t

0
‖UD(r, 0)g‖βi−1∞ Bβi

i (r)dr

]
= Bi(t)UD(t, 0)g(x),

where we used (12) in the last equality. Therefore,

0 ≤ Fivi(t, x) ≤ (B1(t) ∨B2(t))UD(t, 0)g(x), t ≥ 0, x ∈ D.

We now define

ui,0(t, x) = UD(t, 0)fi(x) and ui,n+1(t, x) = Fiui,n(t, x), n = 0, 1, . . . .

Using that ui,0(t, x) ≤ ui,1(t, x) for all t ≥ 0, x ∈ D, and again that UD(t, s) preserves positivity, it

follows by induction that ui,n(t, x) ≤ ui,n+1(t, x), n ≥ 0. Hence

ui(t, x) ≡ lim sup
n→∞

ui,n(t, x) ≤ (B1(t) ∨B2(t))UD(t, 0)g(x) <∞

for all t ≥ 0 and x ∈ D. From the monotone convergence theorem we conclude that ui(t, x) satisfies

ui(t, x) = UD(t, 0)fi(x) +

∫ t

0
UD(t, r)uβii′ (r, x)dr, t ≥ 0, x ∈ D.

Therefore, (u1, u2) is a global mild solution of (3).

5 Blow up in finite time of the positive mild solution

In the sequel we assume that (H2) or (H3) holds.

Recall that ϕ0 is the eigenfunction corresponding to the first eigenvalue λ0 of the infinitesimal

generator of the semigroup {SD (t)}t≥0. Arguing as in the case of Brownian motion in a bounded

domain (see [15], p. 287), it can be shown that ϕ2
0 (x) dx is the unique invariant measure of the

semigroup {Q (t)}t≥0 given by

Q (t) g (x) =
eλ0t

ϕ0 (x)
SD (t) (gϕ0) (x) , x ∈ D, g ∈ Cb (D) , t ≥ 0.

Thus, defining

E [h] :=

∫
h (x)ϕ2

0 (x) dx, h ∈ Cb (D) ,

and

T (t, s) g (x) =
eλ0K(t,s)

ϕ0 (x)
SD (K (t, s)) (gϕ0) (x) , x ∈ D, g ∈ Cb (D) , t ≥ s ≥ 0,
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we have that for any t ≥ s ≥ 0 and g ∈ Cb (D),

E [Q (t) g] = E [g] and T (t, s) g = Q (K (t, s)) g. (13)

Lemma 4 For any t ≥ s ≥ 0 and g ∈ Cb (D),

E [T (t, s) g] = E [g] .

Proof. This is a direct consequence of (13).

Proposition 5 Let fi = giϕ0, where gi ∈ Cb(D) is nonnegative and not identically zero, i = 1, 2.

If

min
i∈{1,2}

〈fi, ϕ0〉 > max
i∈{1,2}

(β1β2 − 1

βi + 1

)(
βi + 1

βi′ + 1

) βi
βi+1

∫ ∞
0

min
i∈{1,2}

(
e−λ0K(r,0)

‖ϕ0‖1

)βi−1
dr


βi+1

1−β1β2

, (14)

then the mild solution of (3) blows up in finite time.

Proof. Notice that 〈fi, ϕ0〉 = E [gi] > 0, i = 1, 2. We define

wi (t, x) =
eλ0K(t,0)ui (t, x)

ϕ0 (x)
and z (t, x) = e−λ0K(t,0)ϕ0 (x) , x ∈ D, t ≥ 0,

where (u1, u2) is the mild solution of (3), i.e., (u1, u2) solves the integral system (9). Multiplying

both sides of (9) by ϕ0 (x)−1exp (λ0K (t, 0)) we get

wi (t, x)

= T (t, 0) gi (x) +

∫ t

0

exp (λ0K (t, 0))

ϕ0 (x)
UD (t, r)uβii′ (r, x) dr

= T (t, 0) gi (x) +

∫ t

0

exp (λ0K (t, 0))

ϕ0 (x)
UD (t, r)

(
uβii′ (r, x)

ϕ
βi−1

0 (x)
ϕ
βi−1

0 (x)

)
dr

= T (t, 0) gi (x) +

∫ t

0
exp (λ0K (r, 0))

exp (λ0K (t, r))

ϕ0 (x)
UD (t, r)

(
uβii′ (r, x)

ϕβi−10 (x)
ϕβi−10 (x)

)
dr

= T (t, 0) gi (x) +

∫ t

0
exp (λ0K (r, 0))T (t, r)

(
uβii′ (r, x)

ϕβi0 (x)
ϕβi−10 (x)

)
dr

= T (t, 0) gi (x) +

∫ t

0
T (t, r)

(exp (λ0K (r, 0)βi)u
βi
i′ (r, x)

ϕβi0 (x)

· exp (−λ0K (r, 0) (βi − 1))ϕβi−10 (x)
)
dr

= T (t, 0) gi (x) +

∫ t

0
T (t, r)wβii′ (r, x) zβi−1 (r, x) dr.

9



 
 

The last equality renders

E [wi (t, ·)] = E [T (t, 0) gi] +

∫ t

0
E
[
T (t, r)

(
wβii′ (r, ·) zβi−1 (r, ·)

)]
dr,

and due to Lemma 4,

E [wi (t, ·)] = E [gi] +

∫ t

0
E
[
wβii′ (r, ·) zβi−1 (r, ·)

]
dr.

It follows that for any ε > 0,

E [wi (t+ ε, ·)]− E [wi (t, ·)] =

∫ t+ε

t
E
[
wβii′ (r, ·) zβi−1 (r, ·)

]
dr, (15)

with

E
[
wβii′ (r, ·) zβi−1 (r, ·)

]
= e−λ0K(r,0)(βi−1)

∫
[wi′ (r, x)ϕ0 (x)]βi ϕ0 (x) dx

≥ e−λ0K(r,0)(βi−1) ‖ϕ0‖1
(∫

wi′ (r, x)
ϕ2
0 (x)

‖ϕ0‖1
dx

)βi
=

(
exp (−λ0K (r, 0))

‖ϕ0‖1

)βi−1
E [wi′ (r, ·)]βi , (16)

where we have used Jensen’s inequality with respect to the probability measure ‖ϕ0‖−11 ϕ0 (x) dx.

Let hi (t) := E [wi (t, ·)]. Plugging (16) into (15), and afterward multiplying the resulting inequality

by ε−1 with ε→ 0, we obtain that

h′i (t) ≥
(
‖ϕ0‖−11 exp (−λ0K (t, 0))

)βi−1
hβii′ (t) , hi (0) = 〈fi, ϕ0〉 . (17)

Let

c(t) = min
i∈{1,2}

{(
‖ϕ0‖−11 exp(−λ0K(t, 0))

)βi−1} , N = min
i∈{1,2}

{〈fi, ϕ0〉} > 0,

and consider the ordinary differential system

p′1(t) = c(t)pβ12 (t), p′2(t) = c(t)pβ21 (t), pi (0) = N, i = 1, 2. (18)

It follows that
∫ t
0 p

β2
1 (r)p′1(r) dr =

∫ t
0 p

β1
2 (r)p′2(r) dr, and

1

β2 + 1

[
pβ2+1
1 (t)−Nβ2+1

]
=

1

β1 + 1

[
pβ1+1
2 (t)−Nβ1+1

]
.

Notice that if N ≤
(
β2+1
β1+1

) 1
β2+1

N
β1+1
β2+1 , then

1

β2 + 1
pβ2+1
1 (t) ≤ 1

β1 + 1
pβ1+1
2 (t) (19)
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 and, if N ≥

(
β2+1
β1+1

) 1
β2+1

N
β1+1
β2+1 , then

1

β2 + 1
pβ2+1
1 (t) ≥ 1

β1 + 1
pβ1+1
2 (t). (20)

If (19) holds, then

p2(t) ≥
(
β1 + 1

β2 + 1

) 1
β1+1

p
β2+1
β1+1

1 (t).

Substituting this into the first equation of (18), we get

p′1 (t) ≥ c(t)
(
β1 + 1

β2 + 1

) β1
β1+1

p
β1(β2+1)
β1+1

1 (t),

which is the same as

p
−β1(β2+1)

β1+1

1 (t)p′1 (t) ≥ c(t)
(
β1 + 1

β2 + 1

) β1
β1+1

.

Integrating both sides of the above inequality from 0 to t yields

β1 + 1

1− β1β2

[
p

1−β1β2
β1+1

1 (t)−N
1−β1β2
β1+1

]
≥
(
β1 + 1

β2 + 1

) β1
β1+1

∫ t

0
c(r)dr.

Thus, in view of β1, β2 > 1,

p1 (t) ≥

N 1−β1β2
β1+1 −

(
β1β2 − 1

β1 + 1

)(
β1 + 1

β2 + 1

) β1
β1+1

∫ t

0
c(r)dr


β1+1

1−β1β2

. (21)

Similarly, if (20) holds, we can show that

p2 (t) ≥

N 1−β1β2
β2+1 −

(
β1β2 − 1

β2 + 1

)(
β2 + 1

β1 + 1

) β2
β2+1

∫ t

0
c(r)dr


β2+1

1−β1β2

. (22)

Since the function
∫ t
0 c(r) dr is continuous and increases to

∫∞
0 c(r) dr, (21) and (22) implies finite-

time blow up of (3) provided that

min
i∈{1,2}

〈fi, ϕ0〉 > max
i∈{1,2}

(β1β2 − 1

βi + 1

)(
βi + 1

βi′ + 1

) βi
βi+1

∫ ∞
0

min
i∈{1,2}

(
e−λ0K(r,0)

‖ϕ0‖1

)βi−1
dr


βi+1

1−β1β2

.

Theorem 6 Let f1, f2 ∈ C0(D) be two nonnegative functions which are not identically zero. If

Condition (14) holds, then the mild solution of (3) blows up in finite time.
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Proof. Let i ∈ {1, 2}. Since by assumption fi is not identically zero, there exists xi ∈ D such

that fi(xi) > 0. Using the continuity of fi we get ri > 0 such that fi(x) > 0 on Bri(xi) ⊂ D. By

Urysohn’s lemma there exists a continuous function qi : Rd → [0, 1] such that qi = 1 on the closed

ball Bri/3(xi), and qi = 0 on
(
B2ri/3(xi)

)c
. Hence the support of qi is contained in Bri(xi). Putting

hi = 1
2 (fi ∧ qi) we get a continuous function which is not identically zero, and whose support C̃i is

compact, has positive Lebesgue measure and is contained in D. Moreover, 0 ≤ hi < fi, on C̃i.

Let {tn} be any given sequence of positive numbers with tn ↓ 0. It follows from the strong

continuity of {UD(t, s)}t≥s≥0, that

UD (tn, 0)hi → hi in L2 (D) , i = 1, 2,

and therefore

UD (tn, 0)h1 → h1 in L2
(
C̃1

)
.

Using Egoroff’s theorem, there exists a subsequence {tnk} of {tn}, and a set C1 ⊂ C̃1 of positive

Lebesgue measure such that

UD (tnk , 0)h1 → h1 uniformly in C1. (23)

Writing sk ≡ tnk and arguing as above, we find a subsequence {skn} of {sk}, and a set C2 ⊂ C̃2 of

positive Lebesgue measure such that

UD (skn , 0)h2 → h2 uniformly in C2. (24)

From (23) and (24) it follows that there exists t0 > 0 such that

UD (t0, 0)h1 (x) < f1 (x) for all x ∈ C1

and
UD (t0, 0)h2 (x) < f2 (x) for all x ∈ C2.

Defining

f̃i(x) = 1Ci(x)UD (t0, 0)hi (x) , x ∈ D, i = 1, 2,

where 1Ci is the indicator function of Ci, we obtain

ui(t, x) = UD(t, 0)fi(x) +

∫ t

0
UD (t, r)uβii′ (r, x) dr ≥ UD(t, 0)f̃i(x) +

∫ t

0
UD (t, r)uβii′ (r, x) dr.

Let (v1, v2) be the mild solution of (3) with initial value
(
f̃1, f̃2

)
, which is given by

vi(t, x) = UD(t, 0)f̃i(x) +

∫ t

0
UD (t, r) vβii′ (r, x) dr, i = 1, 2.

We define the operator Ψ̃ by

Ψ̃ (v1, v2) (t, x) =
(
UD(t, 0)f̃1(x), UD(t, 0)f̃2(x)

)
+

(∫ t

0
UD (t, r) vβ12 (r, x) dr,

∫ t

0
UD (t, r) vβ21 (r, x) dr

)
.
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For any real numbers a, b, c, d, let us write (a, b) ≤ (c, d) when a ≤ c and b ≤ d. Thus

Ψ̃ (u1, u2) (t, x) ≤ Ψ (u1, u2) (t, x),

where Ψ is defined in (10). Similarly as in [17], we define the sequences {(v1,n, v2,n)}∞n=0 and

{(u1,n, u2,n)}∞n=0 by

(v1,n+1, v2,n+1) = Ψ̃ (v1,n, v2,n) and (u1,n+1, u2,n+1) = Ψ (u1,n, u2,n) ,

respectively. If (v1,n(t, x), v2,n(t, x)) ≤ (u1,n(t, x), u2,n(t, x)), then

(v1,n+1(t, x), v2,n+1(t, x)) ≤ Ψ̃ (u1,n, u2,n) (t, x) ≤ Ψ (u1,n, u2,n) (t, x) = (u1,n+1(t, x), u2,n+1(t, x)) .

The contraction mapping property in a Banach space implies that the sequence {(v1,n, v2,n)}∞n=0,

with (v1,0, v2,0) = (0, 0), converges in the norm ||| · ||| to the unique fixed point (v1, v2) of Ψ̃, namely

(v1,n, v2,n)→ (v1, v2) and Ψ̃ (v1,n, v2,n)→ (v1, v2)

in the norm ||| · ||| as n → ∞. Similarly, the sequence {(u1,n, u2,n)}∞n=0 with (u1,0, u2,0) = (0, 0)

converges to the unique fixed point (u1, u2) of Ψ, that is

(u1,n, u2,n)→ (u1, u2) and Ψ (u1,n, u2,n)→ (u1, u2)

in the norm ||| · ||| as n→∞. Choosing (v1,0, v2,0) = (u1,0, u2,0) = (0, 0), we obtain

(v1(t, x), v2(t, x)) ≤ (u1(t, x), u2(t, x)) .

Therefore, it suffices to prove that, under the hypothesis of Theorem 6, the mild solution of (3)

blows up in finite time for all initial conditions of the form

ui (0, x) = 1Ci(x)UD (t0, 0)hi (x) , x ∈ D, i = 1, 2.

On the other hand, intrinsic ultracontractivity (8) implies that

UD (t0, 0)hi
ϕ0

=
SD (K (t0, 0))hi

ϕ0
∈ Cb (D) .

Thus, we can assume that the initial conditions in (3) are of the form ui (0, x) = 1Cipi(x)ϕ0(x),

with 0 < pi ∈ Cb (D). The assertion of the theorem now follows from Proposition 5 by taking

continuous function gi, with support contained in Ci, such that 0 ≤ gi ≤ 1Cipi, i = 1, 2.

Remark 7 Notice that the above theorem is consistent with the corresponding result for the case

of a single equation obtained in [15], which establishes that for a single Dirichlet boundary problem

with k ≡ 1, A = ∆, β > 1 and a nonnegative initial condition f ∈ C0 (D), where D is a bounded

regular domain, the nonnegative mild solution blows up in finite time if 〈f, ϕ0〉 > λ
1

β−1

0 ‖ϕ0‖1.
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